Nuprl Lemma : setmem-irreflexive
∀s:Set{i:l}. (¬(s ∈ s))
Proof
Definitions occuring in Statement : 
Set: Set{i:l}, 
setmem: (x ∈ s), 
all: ∀x:A. B[x], 
not: ¬A
Definitions unfolded in proof : 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
exists: ∃x:A. B[x], 
top: Top, 
false: False, 
not: ¬A, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
seteq_wf, 
seteq_weakening, 
seteq-iff, 
setmem-iff, 
item_mk_set_lemma, 
dom_mk_set_lemma, 
all_wf, 
mk-set_wf, 
Set_wf, 
set-subtype-coSet, 
setmem_wf, 
not_wf, 
set-induction
Rules used in proof : 
dependent_pairFormation, 
productElimination, 
voidEquality, 
isect_memberEquality, 
dependent_functionElimination, 
functionEquality, 
voidElimination, 
lambdaFormation, 
independent_functionElimination, 
because_Cache, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
cumulativity, 
lambdaEquality, 
sqequalRule, 
thin, 
isectElimination, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}s:Set\{i:l\}.  (\mneg{}(s  \mmember{}  s))
Date html generated:
2018_07_29-AM-09_51_51
Last ObjectModification:
2018_07_11-PM-03_36_19
Theory : constructive!set!theory
Home
Index