Nuprl Lemma : constant-A-open-box
∀Gamma,X,I,alpha:Top.  ∀[J,x,i:Top].  (A-open-box(Gamma;(X);I;alpha;J;x;i) ~ open_box(X;I;J;x;i))
Proof
Definitions occuring in Statement : 
A-open-box: A-open-box(X;A;I;alpha;J;x;i), 
open_box: open_box(X;I;J;x;i), 
constant-cubical-type: (X), 
uall: ∀[x:A]. B[x], 
top: Top, 
all: ∀x:A. B[x], 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
open_box: open_box(X;I;J;x;i), 
A-open-box: A-open-box(X;A;I;alpha;J;x;i), 
I-face: I-face(X;I), 
constant-cubical-type: (X), 
A-face: A-face(X;A;I;alpha), 
cubical-type-at: A(a), 
pi1: fst(t), 
adjacent-compatible: adjacent-compatible(X;I;L), 
A-adjacent-compatible: A-adjacent-compatible(X;A;I;alpha;L), 
face-compatible: face-compatible(X;I;f1;f2), 
A-face-compatible: A-face-compatible(X;A;I;alpha;f1;f2), 
cubical-type-ap-morph: (u a f), 
pi2: snd(t), 
face-name: face-name(f), 
A-face-name: A-face-name(f)
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
sqequalAxiom, 
lemma_by_obid, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}Gamma,X,I,alpha:Top.    \mforall{}[J,x,i:Top].    (A-open-box(Gamma;(X);I;alpha;J;x;i)  \msim{}  open\_box(X;I;J;x;i))
Date html generated:
2016_06_16-PM-05_56_31
Last ObjectModification:
2015_12_28-PM-04_27_41
Theory : cubical!sets
Home
Index