Nuprl Lemma : csm-ap-cubical-fst

[X,Delta:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[p:{X ⊢ _:Σ B}]. ∀[s:Delta ⟶ X].
  ((p.1)s (p)s.1 ∈ {Delta ⊢ _:(A)s})


Proof




Definitions occuring in Statement :  cubical-fst: p.1 cubical-sigma: Σ B cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:AF} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube-set-map: A ⟶ B cubical-set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top
Lemmas referenced :  csm-cubical-fst csm-ap-term_wf cubical-fst_wf cube-set-map_wf cubical-term_wf cubical-sigma_wf cubical-type_wf cube-context-adjoin_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis hypothesisEquality

Latex:
\mforall{}[X,Delta:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[p:\{X  \mvdash{}  \_:\mSigma{}  A  B\}].  \mforall{}[s:Delta  {}\mrightarrow{}  X].
    ((p.1)s  =  (p)s.1)



Date html generated: 2018_05_23-PM-06_31_05
Last ObjectModification: 2018_05_20-PM-04_17_58

Theory : cubical!sets


Home Index