Nuprl Lemma : csm-ap-cubical-fst
∀[X,Delta:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[p:{X ⊢ _:Σ A B}]. ∀[s:Delta ⟶ X].
  ((p.1)s = (p)s.1 ∈ {Delta ⊢ _:(A)s})
Proof
Definitions occuring in Statement : 
cubical-fst: p.1
, 
cubical-sigma: Σ A B
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:AF}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube-set-map: A ⟶ B
, 
cubical-set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
Lemmas referenced : 
csm-cubical-fst, 
csm-ap-term_wf, 
cubical-fst_wf, 
cube-set-map_wf, 
cubical-term_wf, 
cubical-sigma_wf, 
cubical-type_wf, 
cube-context-adjoin_wf, 
cubical-set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
hypothesisEquality
Latex:
\mforall{}[X,Delta:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[p:\{X  \mvdash{}  \_:\mSigma{}  A  B\}].  \mforall{}[s:Delta  {}\mrightarrow{}  X].
    ((p.1)s  =  (p)s.1)
Date html generated:
2018_05_23-PM-06_31_05
Last ObjectModification:
2018_05_20-PM-04_17_58
Theory : cubical!sets
Home
Index