Nuprl Lemma : csm-cubical-type-ap-morph
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[I,J,f,a,u,s:Top].  ((u a f) ~ (u (s)a f))
Proof
Definitions occuring in Statement : 
csm-ap-type: (AF)s, 
cubical-type-ap-morph: (u a f), 
cubical-type: {X ⊢ _}, 
csm-ap: (s)x, 
cubical-set: CubicalSet, 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
cubical-type: {X ⊢ _}, 
csm-ap: (s)x, 
cubical-type-ap-morph: (u a f), 
csm-ap-type: (AF)s, 
pi2: snd(t), 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
top_wf, 
cubical-type_wf, 
cubical-set_wf
Rules used in proof : 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
setElimination, 
thin, 
rename, 
cut, 
productElimination, 
sqequalRule, 
hypothesis, 
lemma_by_obid, 
because_Cache, 
isectElimination, 
hypothesisEquality, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
isect_memberEquality
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[I,J,f,a,u,s:Top].    ((u  a  f)  \msim{}  (u  (s)a  f))
 Date html generated: 
2016_06_16-PM-05_39_51
 Last ObjectModification: 
2015_12_28-PM-04_35_48
Theory : cubical!sets
Home
Index