Nuprl Lemma : cube-set-map-is
∀[A,B:CubicalSet].
  (A ⟶ B ~ {trans:I:(Cname List) ⟶ A(I) ⟶ B(I)| 
             ∀I,J:Cname List. ∀g:name-morph(I;J).  ((λs.g(trans I s)) = (λs.(trans J g(s))) ∈ (A(I) ⟶ B(J)))} )
Proof
Definitions occuring in Statement : 
cube-set-restriction: f(s), 
I-cube: X(I), 
cube-set-map: A ⟶ B, 
cubical-set: CubicalSet, 
name-morph: name-morph(I;J), 
coordinate_name: Cname, 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
set: {x:A| B[x]} , 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
sqequal: s ~ t, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cube-set-restriction: f(s), 
I-cube: X(I), 
cube-set-map: A ⟶ B, 
type-cat: TypeCat, 
name-cat: NameCat, 
nat-trans: nat-trans(C;D;F;G), 
functor-arrow: functor-arrow(F), 
compose: f o g, 
cat-comp: cat-comp(C), 
cat-arrow: cat-arrow(C), 
cat-ob: cat-ob(C), 
pi1: fst(t), 
pi2: snd(t)
Lemmas referenced : 
cubical-set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
sqequalAxiom, 
lemma_by_obid, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[A,B:CubicalSet].
    (A  {}\mrightarrow{}  B  \msim{}  \{trans:I:(Cname  List)  {}\mrightarrow{}  A(I)  {}\mrightarrow{}  B(I)| 
                          \mforall{}I,J:Cname  List.  \mforall{}g:name-morph(I;J).    ((\mlambda{}s.g(trans  I  s))  =  (\mlambda{}s.(trans  J  g(s))))\}  )
Date html generated:
2016_06_16-PM-05_37_40
Last ObjectModification:
2015_12_28-PM-04_37_07
Theory : cubical!sets
Home
Index