Nuprl Definition : bijection-equiv
bijection-equiv(X;A;B;f;g) ==
  equiv-witness(cubical-lam(X;λI,alpha. (f (snd(alpha))));(λcontr-witness(X.discr(B);fiber-point(λI,alpha. (g (snd(alpha\000C)));
                                                                                         refl(q));refl(q))))
Definitions occuring in Statement : 
equiv-witness: equiv-witness(f;cntr), 
fiber-point: fiber-point(t;c), 
cubical-fiber: Fiber(w;a), 
contr-witness: contr-witness(X;c;p), 
cubical-refl: refl(a), 
discrete-cubical-type: discr(T), 
cubical-lam: cubical-lam(X;b), 
cubical-lambda: (λb), 
cc-snd: q, 
cc-fst: p, 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
csm-ap-type: (AF)s, 
pi2: snd(t), 
apply: f a, 
lambda: λx.A[x]
Definitions occuring in definition : 
cc-snd: q, 
pi2: snd(t), 
apply: f a, 
lambda: λx.A[x], 
cubical-lam: cubical-lam(X;b), 
cc-fst: p, 
csm-ap-term: (t)s, 
discrete-cubical-type: discr(T), 
csm-ap-type: (AF)s, 
cube-context-adjoin: X.A, 
cubical-fiber: Fiber(w;a), 
cubical-refl: refl(a), 
fiber-point: fiber-point(t;c), 
contr-witness: contr-witness(X;c;p), 
cubical-lambda: (λb), 
equiv-witness: equiv-witness(f;cntr)
FDL editor aliases : 
bijection-equiv
Latex:
bijection-equiv(X;A;B;f;g)  ==
    equiv-witness(cubical-lam(X;\mlambda{}I,alpha.
                                                                              (f 
                                                                                (snd(alpha))));(\mlambda{}contr-witness(X.discr(B);...;refl(q))))
Date html generated:
2017_02_21-AM-10_50_19
Last ObjectModification:
2017_02_10-PM-04_59_59
Theory : cubical!type!theory
Home
Index