Nuprl Definition : bijection-equiv

bijection-equiv(X;A;B;f;g) ==
  equiv-witness(cubical-lam(X;λI,alpha. (f (snd(alpha))));(λcontr-witness(X.discr(B);fiber-point(λI,alpha. (g (snd(alpha\000C)));
                                                                                         refl(q));refl(q))))



Definitions occuring in Statement :  equiv-witness: equiv-witness(f;cntr) fiber-point: fiber-point(t;c) cubical-fiber: Fiber(w;a) contr-witness: contr-witness(X;c;p) cubical-refl: refl(a) discrete-cubical-type: discr(T) cubical-lam: cubical-lam(X;b) cubical-lambda: b) cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s csm-ap-type: (AF)s pi2: snd(t) apply: a lambda: λx.A[x]
Definitions occuring in definition :  cc-snd: q pi2: snd(t) apply: a lambda: λx.A[x] cubical-lam: cubical-lam(X;b) cc-fst: p csm-ap-term: (t)s discrete-cubical-type: discr(T) csm-ap-type: (AF)s cube-context-adjoin: X.A cubical-fiber: Fiber(w;a) cubical-refl: refl(a) fiber-point: fiber-point(t;c) contr-witness: contr-witness(X;c;p) cubical-lambda: b) equiv-witness: equiv-witness(f;cntr)
FDL editor aliases :  bijection-equiv

Latex:
bijection-equiv(X;A;B;f;g)  ==
    equiv-witness(cubical-lam(X;\mlambda{}I,alpha.
                                                                              (f 
                                                                                (snd(alpha))));(\mlambda{}contr-witness(X.discr(B);...;refl(q))))



Date html generated: 2017_02_21-AM-10_50_19
Last ObjectModification: 2017_02_10-PM-04_59_59

Theory : cubical!type!theory


Home Index