Nuprl Lemma : canonical-section_wf

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[I:fset(ℕ)]. ∀[rho:Gamma(I)]. ∀[a:A(rho)].
  (canonical-section(Gamma;A;I;rho;a) ∈ {formal-cube(I) ⊢ _:(A)<rho>})


Proof




Definitions occuring in Statement :  canonical-section: canonical-section(Gamma;A;I;rho;a) cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type-at: A(a) cubical-type: {X ⊢ _} context-map: <rho> formal-cube: formal-cube(I) I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube-cat: CubeCat all: x:A. B[x] I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a) csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x context-map: <rho> ps-context-map: <rho> formal-cube: formal-cube(I) Yoneda: Yoneda(I) canonical-section: canonical-section(Gamma;A;I;rho;a) ps-canonical-section: ps-canonical-section(Gamma;A;I;rho;a) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f)
Lemmas referenced :  ps-canonical-section_wf cube-cat_wf cubical-type-sq-presheaf-type cat_ob_pair_lemma cat_arrow_triple_lemma cat_comp_tuple_lemma cubical-term-sq-presheaf-term
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop,  dependent_functionElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[rho:Gamma(I)].  \mforall{}[a:A(rho)].
    (canonical-section(Gamma;A;I;rho;a)  \mmember{}  \{formal-cube(I)  \mvdash{}  \_:(A)<rho>\})



Date html generated: 2020_05_20-PM-01_53_17
Last ObjectModification: 2020_04_03-PM-08_28_09

Theory : cubical!type!theory


Home Index