Nuprl Lemma : cc-adjoin-cube-restriction

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[J,K,g,v,u:Top].  (g((v;u)) (g(v);(u g)))


Proof




Definitions occuring in Statement :  cc-adjoin-cube: (v;u) cube-context-adjoin: X.A cubical-type-ap-morph: (u f) cubical-type: {X ⊢ _} cube-set-restriction: f(s) cubical_set: CubicalSet uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube-set-restriction: f(s) psc-restriction: f(s) cube-context-adjoin: X.A psc-adjoin: X.A I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) cc-adjoin-cube: (v;u) psc-adjoin-set: (v;u)
Lemmas referenced :  psc-adjoin-set-restriction cube-cat_wf cubical-type-sq-presheaf-type
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[J,K,g,v,u:Top].    (g((v;u))  \msim{}  (g(v);(u  v  g)))



Date html generated: 2020_05_20-PM-01_54_44
Last ObjectModification: 2020_04_03-PM-08_29_18

Theory : cubical!type!theory


Home Index