Nuprl Lemma : cc-m4_wf
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[C:{X.A.B ⊢ _}]. ∀[D:{X.A.B.C ⊢ _}].  (q4 ∈ {X.A.B.C.D ⊢ _:((((A)p)p)p)p})
Proof
Definitions occuring in Statement : 
cc-m4: q4
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
cube-context-adjoin: X.A
, 
psc-adjoin: X.A
, 
I_cube: A(I)
, 
I_set: A(I)
, 
cubical-type-at: A(a)
, 
presheaf-type-at: A(a)
, 
cube-set-restriction: f(s)
, 
psc-restriction: f(s)
, 
cubical-type-ap-morph: (u a f)
, 
presheaf-type-ap-morph: (u a f)
, 
csm-ap-type: (AF)s
, 
pscm-ap-type: (AF)s
, 
csm-ap: (s)x
, 
pscm-ap: (s)x
, 
cc-fst: p
, 
psc-fst: p
, 
cc-m4: q4
, 
psc-m4: q4
, 
csm-ap-term: (t)s
, 
pscm-ap-term: (t)s
, 
cc-m3: q3
, 
psc-m3: q3
, 
cc-m2: q2
, 
psc-m2: q2
, 
cc-snd: q
, 
psc-snd: q
Lemmas referenced : 
psc-m4_wf, 
cube-cat_wf, 
cubical-type-sq-presheaf-type, 
cubical-term-sq-presheaf-term
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
Error :memTop
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[C:\{X.A.B  \mvdash{}  \_\}].  \mforall{}[D:\{X.A.B.C  \mvdash{}  \_\}].
    (q4  \mmember{}  \{X.A.B.C.D  \mvdash{}  \_:((((A)p)p)p)p\})
Date html generated:
2020_05_20-PM-01_55_55
Last ObjectModification:
2020_04_03-PM-08_30_16
Theory : cubical!type!theory
Home
Index