Nuprl Lemma : cc-m4_wf

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[C:{X.A.B ⊢ _}]. ∀[D:{X.A.B.C ⊢ _}].  (q4 ∈ {X.A.B.C.D ⊢ _:((((A)p)p)p)p})


Proof




Definitions occuring in Statement :  cc-m4: q4 cc-fst: p cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube-context-adjoin: X.A psc-adjoin: X.A I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x cc-fst: p psc-fst: p cc-m4: q4 psc-m4: q4 csm-ap-term: (t)s pscm-ap-term: (t)s cc-m3: q3 psc-m3: q3 cc-m2: q2 psc-m2: q2 cc-snd: q psc-snd: q
Lemmas referenced :  psc-m4_wf cube-cat_wf cubical-type-sq-presheaf-type cubical-term-sq-presheaf-term
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[C:\{X.A.B  \mvdash{}  \_\}].  \mforall{}[D:\{X.A.B.C  \mvdash{}  \_\}].
    (q4  \mmember{}  \{X.A.B.C.D  \mvdash{}  \_:((((A)p)p)p)p\})



Date html generated: 2020_05_20-PM-01_55_55
Last ObjectModification: 2020_04_03-PM-08_30_16

Theory : cubical!type!theory


Home Index