Nuprl Lemma : cc-snd-0
∀[X:Top]. ((q)[0(𝕀)] ~ 0(𝕀))
Proof
Definitions occuring in Statement : 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
cc-snd: q
, 
csm-ap-term: (t)s
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
interval-0: 0(𝕀)
, 
cc-snd: q
, 
csm-id-adjoin: [u]
, 
csm-ap-term: (t)s
, 
csm-id: 1(X)
, 
csm-adjoin: (s;u)
, 
csm-ap: (s)x
, 
pi2: snd(t)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
extract_by_obid, 
hypothesis
Latex:
\mforall{}[X:Top].  ((q)[0(\mBbbI{})]  \msim{}  0(\mBbbI{}))
Date html generated:
2017_01_10-AM-08_43_54
Last ObjectModification:
2017_01_02-PM-03_08_40
Theory : cubical!type!theory
Home
Index