Nuprl Lemma : cc-snd-0

[X:Top]. ((q)[0(𝕀)] 0(𝕀))


Proof




Definitions occuring in Statement :  interval-0: 0(𝕀) csm-id-adjoin: [u] cc-snd: q csm-ap-term: (t)s uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  interval-0: 0(𝕀) cc-snd: q csm-id-adjoin: [u] csm-ap-term: (t)s csm-id: 1(X) csm-adjoin: (s;u) csm-ap: (s)x pi2: snd(t) uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule isect_memberFormation introduction cut sqequalAxiom extract_by_obid hypothesis

Latex:
\mforall{}[X:Top].  ((q)[0(\mBbbI{})]  \msim{}  0(\mBbbI{}))



Date html generated: 2017_01_10-AM-08_43_54
Last ObjectModification: 2017_01_02-PM-03_08_40

Theory : cubical!type!theory


Home Index