Nuprl Lemma : cc-snd-csm-adjoin

[Gamma,Delta:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[sigma:Delta j⟶ Gamma]. ∀[u:{Delta ⊢ _:(A)sigma}].
  ((q)(sigma;u) u ∈ {Delta ⊢ _:(A)sigma})


Proof




Definitions occuring in Statement :  csm-adjoin: (s;u) cc-snd: q csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube_set_map: A ⟶ B csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x csm-ap-term: (t)s pscm-ap-term: (t)s cc-snd: q psc-snd: q csm-adjoin: (s;u) pscm-adjoin: (s;u)
Lemmas referenced :  psc-snd-pscm-adjoin cube-cat_wf cubical-type-sq-presheaf-type cubical-term-sq-presheaf-term
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop

Latex:
\mforall{}[Gamma,Delta:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[sigma:Delta  j{}\mrightarrow{}  Gamma].  \mforall{}[u:\{Delta  \mvdash{}  \_:(A)sigma\}].
    ((q)(sigma;u)  =  u)



Date html generated: 2020_05_20-PM-01_57_08
Last ObjectModification: 2020_04_03-PM-08_31_15

Theory : cubical!type!theory


Home Index