Nuprl Definition : compatible-composition

compatible-composition{j:l, i:l}(Gamma; phi; psi; A; B; cA; cB) ==
  ∀H:j⊢. ∀sigma:H.𝕀 j⟶ Gamma, (phi ∧ psi). ∀chi:{H ⊢ _:𝔽}. ∀u:{H, chi.𝕀 ⊢ _:(A)sigma}.
  ∀a0:{H ⊢ _:((A)sigma)[0(𝕀)][chi |⟶ (u)[0(𝕀)]]}.
    ((cB sigma chi a0) (cA sigma chi a0) ∈ {H ⊢ _:((A)sigma)[1(𝕀)]})



Definitions occuring in Statement :  constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-and: (a ∧ b) face-type: 𝔽 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cube_set_map: A ⟶ B cubical_set: CubicalSet all: x:A. B[x] apply: a equal: t ∈ T
Definitions occuring in definition :  cubical_set: CubicalSet cube_set_map: A ⟶ B face-and: (a ∧ b) face-type: 𝔽 cube-context-adjoin: X.A interval-type: 𝕀 all: x:A. B[x] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} csm-ap-term: (t)s context-subset: Gamma, phi interval-0: 0(𝕀) equal: t ∈ T cubical-term: {X ⊢ _:A} csm-id-adjoin: [u] interval-1: 1(𝕀) csm-ap-type: (AF)s apply: a

Latex:
compatible-composition\{j:l,  i:l\}(Gamma;  phi;  psi;  A;  B;  cA;  cB)  ==
    \mforall{}H:j\mvdash{}.  \mforall{}sigma:H.\mBbbI{}  j{}\mrightarrow{}  Gamma,  (phi  \mwedge{}  psi).  \mforall{}chi:\{H  \mvdash{}  \_:\mBbbF{}\}.  \mforall{}u:\{H,  chi.\mBbbI{}  \mvdash{}  \_:(A)sigma\}.
    \mforall{}a0:\{H  \mvdash{}  \_:((A)sigma)[0(\mBbbI{})][chi  |{}\mrightarrow{}  (u)[0(\mBbbI{})]]\}.
        ((cB  H  sigma  chi  u  a0)  =  (cA  H  sigma  chi  u  a0))



Date html generated: 2020_05_20-PM-05_14_46
Last ObjectModification: 2020_04_14-PM-06_45_07

Theory : cubical!type!theory


Home Index