Nuprl Lemma : context-iterated-subset2
∀[X:j⊢]. ∀[xx,yy:{X ⊢ _:𝔽}].  sub_cubical_set{j:l}(X, yy, xx; X, yy)
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
sub_cubical_set: Y ⊆ X
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
sub_cubical_set: Y ⊆ X
Lemmas referenced : 
context-subset-is-subset, 
context-subset_wf, 
context-subset-term-subtype, 
face-type_wf, 
cubical-term_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[xx,yy:\{X  \mvdash{}  \_:\mBbbF{}\}].    sub\_cubical\_set\{j:l\}(X,  yy,  xx;  X,  yy)
Date html generated:
2020_05_20-PM-02_56_32
Last ObjectModification:
2020_04_04-PM-05_11_04
Theory : cubical!type!theory
Home
Index