Nuprl Lemma : context-iterated-subset2

[X:j⊢]. ∀[xx,yy:{X ⊢ _:𝔽}].  sub_cubical_set{j:l}(X, yy, xx; X, yy)


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} sub_cubical_set: Y ⊆ X cubical_set: CubicalSet uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B sub_cubical_set: Y ⊆ X
Lemmas referenced :  context-subset-is-subset context-subset_wf context-subset-term-subtype face-type_wf cubical-term_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis applyEquality sqequalRule axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[xx,yy:\{X  \mvdash{}  \_:\mBbbF{}\}].    sub\_cubical\_set\{j:l\}(X,  yy,  xx;  X,  yy)



Date html generated: 2020_05_20-PM-02_56_32
Last ObjectModification: 2020_04_04-PM-05_11_04

Theory : cubical!type!theory


Home Index