Nuprl Lemma : context-map-1
∀[I:fset(ℕ)]. (<1> = 1(formal-cube(I)) ∈ formal-cube(I) ⟶ formal-cube(I))
Proof
Definitions occuring in Statement : 
csm-id: 1(X), 
context-map: <rho>, 
cube_set_map: A ⟶ B, 
formal-cube: formal-cube(I), 
nh-id: 1, 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cube-cat: CubeCat, 
all: ∀x:A. B[x], 
cube_set_map: A ⟶ B, 
formal-cube: formal-cube(I), 
Yoneda: Yoneda(I), 
context-map: <rho>, 
ps-context-map: <rho>, 
csm-id: 1(X), 
pscm-id: 1(X)
Lemmas referenced : 
ps-context-map-1, 
cube-cat_wf, 
cat_ob_pair_lemma, 
cat_arrow_triple_lemma, 
cat_comp_tuple_lemma, 
cat_id_tuple_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
dependent_functionElimination, 
Error :memTop
Latex:
\mforall{}[I:fset(\mBbbN{})].  (ə>  =  1(formal-cube(I)))
Date html generated:
2020_05_20-PM-01_42_08
Last ObjectModification:
2020_04_03-PM-04_00_13
Theory : cubical!type!theory
Home
Index