Nuprl Lemma : csm+-comp-csm+-sq-interval
∀[H,K,X,tau,s:Top].  (tau+ o s+ ~ tau o s+)
Proof
Definitions occuring in Statement : 
interval-type: 𝕀, 
csm+: tau+, 
cube-context-adjoin: X.A, 
csm-comp: G o F, 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
csm-comp: G o F, 
interval-type: 𝕀, 
csm+: tau+, 
cc-snd: q, 
compose: f o g, 
cc-fst: p, 
constant-cubical-type: (X), 
csm-ap-type: (AF)s, 
csm-adjoin: (s;u), 
pi2: snd(t), 
csm-ap: (s)x, 
pi1: fst(t)
Lemmas referenced : 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
axiomSqEquality, 
inhabitedIsType, 
hypothesisEquality, 
sqequalHypSubstitution, 
isect_memberEquality_alt, 
isectElimination, 
thin, 
isectIsTypeImplies, 
extract_by_obid
Latex:
\mforall{}[H,K,X,tau,s:Top].    (tau+  o  s+  \msim{}  tau  o  s+)
Date html generated:
2020_05_20-PM-02_35_44
Last ObjectModification:
2020_04_21-AM-11_58_56
Theory : cubical!type!theory
Home
Index