Nuprl Lemma : csm+-comp-csm+-sq
∀[H,K,X,A,tau,s:Top].  (tau+ o s+ ~ tau o s+)
Proof
Definitions occuring in Statement : 
csm+: tau+
, 
cube-context-adjoin: X.A
, 
csm-ap-type: (AF)s
, 
csm-comp: G o F
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
csm-comp: G o F
, 
csm+: tau+
, 
csm-ap-type: (AF)s
, 
cc-snd: q
, 
compose: f o g
, 
cc-fst: p
, 
csm-adjoin: (s;u)
, 
csm-ap: (s)x
, 
pi2: snd(t)
, 
pi1: fst(t)
Lemmas referenced : 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
axiomSqEquality, 
inhabitedIsType, 
hypothesisEquality, 
sqequalHypSubstitution, 
isect_memberEquality_alt, 
isectElimination, 
thin, 
isectIsTypeImplies, 
extract_by_obid
Latex:
\mforall{}[H,K,X,A,tau,s:Top].    (tau+  o  s+  \msim{}  tau  o  s+)
Date html generated:
2020_05_20-PM-01_58_12
Last ObjectModification:
2020_04_21-PM-00_07_15
Theory : cubical!type!theory
Home
Index