Nuprl Lemma : csm+-comp-csm+-sq

[H,K,X,A,tau,s:Top].  (tau+ s+ tau s+)


Proof




Definitions occuring in Statement :  csm+: tau+ cube-context-adjoin: X.A csm-ap-type: (AF)s csm-comp: F uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T csm-comp: F csm+: tau+ csm-ap-type: (AF)s cc-snd: q compose: g cc-fst: p csm-adjoin: (s;u) csm-ap: (s)x pi2: snd(t) pi1: fst(t)
Lemmas referenced :  istype-top
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule hypothesis axiomSqEquality inhabitedIsType hypothesisEquality sqequalHypSubstitution isect_memberEquality_alt isectElimination thin isectIsTypeImplies extract_by_obid

Latex:
\mforall{}[H,K,X,A,tau,s:Top].    (tau+  o  s+  \msim{}  tau  o  s+)



Date html generated: 2020_05_20-PM-01_58_12
Last ObjectModification: 2020_04_21-PM-00_07_15

Theory : cubical!type!theory


Home Index