Nuprl Lemma : csm+_wf
∀[H,K:j⊢]. ∀[A:{H ⊢ _}]. ∀[tau:K j⟶ H].  (tau+ ∈ K.(A)tau ij⟶ H.A)
Proof
Definitions occuring in Statement : 
csm+: tau+, 
cube-context-adjoin: X.A, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cube_set_map: A ⟶ B, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cubical_set: CubicalSet, 
cube_set_map: A ⟶ B, 
cube-context-adjoin: X.A, 
psc-adjoin: X.A, 
I_cube: A(I), 
I_set: A(I), 
cubical-type-at: A(a), 
presheaf-type-at: A(a), 
csm-ap-type: (AF)s, 
pscm-ap-type: (AF)s, 
csm-ap: (s)x, 
pscm-ap: (s)x, 
cube-set-restriction: f(s), 
psc-restriction: f(s), 
cubical-type-ap-morph: (u a f), 
presheaf-type-ap-morph: (u a f), 
csm+: tau+, 
pscm+: tau+, 
csm-adjoin: (s;u), 
pscm-adjoin: (s;u), 
csm-comp: G o F, 
pscm-comp: G o F, 
cc-fst: p, 
psc-fst: p, 
cc-snd: q, 
psc-snd: q
Lemmas referenced : 
pscm+_wf, 
cube-cat_wf, 
cubical-type-sq-presheaf-type
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
Error :memTop
Latex:
\mforall{}[H,K:j\mvdash{}].  \mforall{}[A:\{H  \mvdash{}  \_\}].  \mforall{}[tau:K  j{}\mrightarrow{}  H].    (tau+  \mmember{}  K.(A)tau  ij{}\mrightarrow{}  H.A)
Date html generated:
2020_05_20-PM-01_58_04
Last ObjectModification:
2020_04_21-AM-11_23_07
Theory : cubical!type!theory
Home
Index