Nuprl Lemma : csm-adjoin-fst-snd
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}].  ((p;q) = 1(Gamma.A) ∈ Gamma.A ij⟶ Gamma.A)
Proof
Definitions occuring in Statement : 
csm-adjoin: (s;u), 
cc-snd: q, 
cc-fst: p, 
cube-context-adjoin: X.A, 
cubical-type: {X ⊢ _}, 
csm-id: 1(X), 
cube_set_map: A ⟶ B, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cubical_set: CubicalSet, 
cube_set_map: A ⟶ B, 
cube-context-adjoin: X.A, 
psc-adjoin: X.A, 
I_cube: A(I), 
I_set: A(I), 
cubical-type-at: A(a), 
presheaf-type-at: A(a), 
cube-set-restriction: f(s), 
psc-restriction: f(s), 
cubical-type-ap-morph: (u a f), 
presheaf-type-ap-morph: (u a f), 
csm-adjoin: (s;u), 
pscm-adjoin: (s;u), 
csm-ap: (s)x, 
pscm-ap: (s)x, 
cc-fst: p, 
psc-fst: p, 
cc-snd: q, 
psc-snd: q, 
csm-id: 1(X), 
pscm-id: 1(X)
Lemmas referenced : 
pscm-adjoin-fst-snd, 
cube-cat_wf, 
cubical-type-sq-presheaf-type
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
Error :memTop
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    ((p;q)  =  1(Gamma.A))
Date html generated:
2020_05_20-PM-01_57_18
Last ObjectModification:
2020_04_04-AM-09_40_36
Theory : cubical!type!theory
Home
Index