Nuprl Lemma : csm-adjoin-id-adjoin
∀[B,xx,s,X,Y,Z:Top].  (((B)(s o p;q))[xx] ~ (B)(s;xx))
Proof
Definitions occuring in Statement : 
csm-id-adjoin: [u]
, 
csm-adjoin: (s;u)
, 
cc-snd: q
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
csm-comp: G o F
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
csm-ap-type: (AF)s
, 
pscm-ap-type: (AF)s
, 
csm-ap: (s)x
, 
pscm-ap: (s)x
, 
csm-adjoin: (s;u)
, 
pscm-adjoin: (s;u)
, 
csm-comp: G o F
, 
pscm-comp: G o F
, 
cc-fst: p
, 
psc-fst: p
, 
cc-snd: q
, 
psc-snd: q
, 
csm-id-adjoin: [u]
, 
pscm-id-adjoin: [u]
, 
csm-id: 1(X)
, 
pscm-id: 1(X)
Lemmas referenced : 
pscm-adjoin-id-adjoin
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalRule, 
sqequalReflexivity, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
hypothesis
Latex:
\mforall{}[B,xx,s,X,Y,Z:Top].    (((B)(s  o  p;q))[xx]  \msim{}  (B)(s;xx))
Date html generated:
2018_05_23-AM-08_52_39
Last ObjectModification:
2018_05_20-PM-06_01_39
Theory : cubical!type!theory
Home
Index