Nuprl Lemma : csm-adjoin-p-q

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}].  ((B)(p;q) B ∈ {X.A ⊢ _})


Proof




Definitions occuring in Statement :  csm-adjoin: (s;u) cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube-context-adjoin: X.A psc-adjoin: X.A I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x csm-adjoin: (s;u) pscm-adjoin: (s;u) cc-fst: p psc-fst: p cc-snd: q psc-snd: q
Lemmas referenced :  pscm-adjoin-p-q cube-cat_wf cubical-type-sq-presheaf-type
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].    ((B)(p;q)  =  B)



Date html generated: 2020_05_20-PM-01_58_48
Last ObjectModification: 2020_04_03-PM-08_32_10

Theory : cubical!type!theory


Home Index