Nuprl Lemma : csm-ap-cubical-app-fun

[X,Delta:j⊢]. ∀[A,B:{X ⊢ _}]. ∀[w:{X ⊢ _:(A ⟶ B)}]. ∀[u:{X ⊢ _:A}]. ∀[s:Delta j⟶ X].
  ((app(w; u))s app((w)s; (u)s) ∈ {Delta ⊢ _:(B)s})


Proof




Definitions occuring in Statement :  cubical-app: app(w; u) cubical-fun: (A ⟶ B) csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cubical-fun: (A ⟶ B) presheaf-fun: (A ⟶ B) cubical-fun-family: cubical-fun-family(X; A; B; I; a) presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) cube-cat: CubeCat all: x:A. B[x] cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) cube_set_map: A ⟶ B csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x csm-ap-term: (t)s pscm-ap-term: (t)s cubical-app: app(w; u) presheaf-app: app(w; u)
Lemmas referenced :  pscm-ap-presheaf-app-fun cube-cat_wf cubical-type-sq-presheaf-type cat_ob_pair_lemma cat_arrow_triple_lemma cat_comp_tuple_lemma cubical-term-sq-presheaf-term cat_id_tuple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop,  dependent_functionElimination

Latex:
\mforall{}[X,Delta:j\mvdash{}].  \mforall{}[A,B:\{X  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:(A  {}\mrightarrow{}  B)\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].  \mforall{}[s:Delta  j{}\mrightarrow{}  X].
    ((app(w;  u))s  =  app((w)s;  (u)s))



Date html generated: 2020_05_20-PM-02_29_32
Last ObjectModification: 2020_04_03-PM-08_39_52

Theory : cubical!type!theory


Home Index