Nuprl Lemma : csm-ap-term-universe

[X,H:j⊢]. ∀[s:H j⟶ X]. ∀[t:{X ⊢ _:c𝕌}].  ((t)s ∈ {H ⊢ _:c𝕌})


Proof




Definitions occuring in Statement :  cubical-universe: c𝕌 csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  csm-ap-term_wf cubical-universe_wf csm-cubical-universe istype-cubical-universe-term cube_set_map_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality because_Cache hypothesis sqequalRule Error :memTop,  equalityTransitivity equalitySymmetry dependent_functionElimination universeIsType inhabitedIsType

Latex:
\mforall{}[X,H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  X].  \mforall{}[t:\{X  \mvdash{}  \_:c\mBbbU{}\}].    ((t)s  \mmember{}  \{H  \mvdash{}  \_:c\mBbbU{}\})



Date html generated: 2020_05_20-PM-07_08_44
Last ObjectModification: 2020_04_28-AM-10_00_36

Theory : cubical!type!theory


Home Index