Nuprl Lemma : csm-ap-term-universe
∀[X,H:j⊢]. ∀[s:H j⟶ X]. ∀[t:{X ⊢ _:c𝕌}].  ((t)s ∈ {H ⊢ _:c𝕌})
Proof
Definitions occuring in Statement : 
cubical-universe: c𝕌
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
csm-ap-term_wf, 
cubical-universe_wf, 
csm-cubical-universe, 
istype-cubical-universe-term, 
cube_set_map_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
universeIsType, 
inhabitedIsType
Latex:
\mforall{}[X,H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  X].  \mforall{}[t:\{X  \mvdash{}  \_:c\mBbbU{}\}].    ((t)s  \mmember{}  \{H  \mvdash{}  \_:c\mBbbU{}\})
Date html generated:
2020_05_20-PM-07_08_44
Last ObjectModification:
2020_04_28-AM-10_00_36
Theory : cubical!type!theory
Home
Index