Nuprl Lemma : csm-ap-type-fst-id-adjoin
∀[X:j⊢]. ∀[B:{X ⊢ _}]. ∀[u:Top].  (((B)p)[u] = B ∈ {X ⊢ _})
Proof
Definitions occuring in Statement : 
csm-id-adjoin: [u]
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
csm-ap-type: (AF)s
, 
pscm-ap-type: (AF)s
, 
csm-ap: (s)x
, 
pscm-ap: (s)x
, 
cc-fst: p
, 
psc-fst: p
, 
csm-id-adjoin: [u]
, 
pscm-id-adjoin: [u]
, 
csm-adjoin: (s;u)
, 
pscm-adjoin: (s;u)
, 
csm-id: 1(X)
, 
pscm-id: 1(X)
Lemmas referenced : 
pscm-ap-type-fst-id-adjoin, 
cube-cat_wf, 
cubical-type-sq-presheaf-type
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
Error :memTop
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[B:\{X  \mvdash{}  \_\}].  \mforall{}[u:Top].    (((B)p)[u]  =  B)
Date html generated:
2020_05_20-PM-01_57_36
Last ObjectModification:
2020_04_03-PM-08_31_37
Theory : cubical!type!theory
Home
Index