Nuprl Lemma : csm-ap-type-subset-iota

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[s:Top].  (((A)s)iota (A)s)


Proof




Definitions occuring in Statement :  csm-ap-type: (AF)s cubical-type: {X ⊢ _} subset-iota: iota cubical_set: CubicalSet uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-type: {X ⊢ _} csm-ap-type: (AF)s subset-iota: iota csm-ap: (s)x
Lemmas referenced :  istype-top cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule hypothesis axiomSqEquality extract_by_obid isect_memberEquality_alt isectElimination hypothesisEquality isectIsTypeImplies inhabitedIsType universeIsType instantiate

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[s:Top].    (((A)s)iota  \msim{}  (A)s)



Date html generated: 2020_05_20-PM-01_49_15
Last ObjectModification: 2020_04_03-PM-08_26_48

Theory : cubical!type!theory


Home Index