Nuprl Lemma : csm-closed-type

[T:{ * ⊢ _}]. ∀[s:Top].  ((closed-type-to-type(T))s closed-type-to-type(T))


Proof




Definitions occuring in Statement :  closed-type-to-type: closed-type-to-type(T) closed-cubical-type: * ⊢ _} csm-ap-type: (AF)s uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T closed-cubical-type: * ⊢ _} csm-ap-type: (AF)s closed-type-to-type: closed-type-to-type(T)
Lemmas referenced :  istype-top closed-cubical-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule hypothesis axiomSqEquality extract_by_obid isect_memberEquality_alt isectElimination hypothesisEquality isectIsTypeImplies inhabitedIsType universeIsType

Latex:
\mforall{}[T:\{  *  \mvdash{}  \_\}].  \mforall{}[s:Top].    ((closed-type-to-type(T))s  \msim{}  closed-type-to-type(T))



Date html generated: 2020_05_20-PM-01_51_05
Last ObjectModification: 2020_03_20-AM-11_39_59

Theory : cubical!type!theory


Home Index