Nuprl Lemma : csm-contr-path
∀[s,c,x:Top].  ((contr-path(c;x))s ~ contr-path((c)s;(x)s))
Proof
Definitions occuring in Statement : 
contr-path: contr-path(c;x)
, 
csm-ap-term: (t)s
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
csm-ap-term: (t)s
, 
contr-path: contr-path(c;x)
, 
cubical-snd: p.2
, 
cubical-app: app(w; u)
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalRule, 
because_Cache, 
cut, 
introduction, 
extract_by_obid, 
hypothesis
Latex:
\mforall{}[s,c,x:Top].    ((contr-path(c;x))s  \msim{}  contr-path((c)s;(x)s))
Date html generated:
2018_05_23-AM-09_39_45
Last ObjectModification:
2018_05_20-PM-06_40_09
Theory : cubical!type!theory
Home
Index