Nuprl Lemma : csm-contr-path

[s,c,x:Top].  ((contr-path(c;x))s contr-path((c)s;(x)s))


Proof




Definitions occuring in Statement :  contr-path: contr-path(c;x) csm-ap-term: (t)s uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] csm-ap-term: (t)s contr-path: contr-path(c;x) cubical-snd: p.2 cubical-app: app(w; u) member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule because_Cache cut introduction extract_by_obid hypothesis

Latex:
\mforall{}[s,c,x:Top].    ((contr-path(c;x))s  \msim{}  contr-path((c)s;(x)s))



Date html generated: 2018_05_23-AM-09_39_45
Last ObjectModification: 2018_05_20-PM-06_40_09

Theory : cubical!type!theory


Home Index