Nuprl Lemma : csm-cubical-fun-family

X,Delta:j⊢. ∀A,B:{X ⊢ _}. ∀s:Delta j⟶ X. ∀I:fset(ℕ). ∀a:Delta(I).
  (cubical-fun-family(X; A; B; I; (s)a) cubical-fun-family(Delta; (A)s; (B)s; I; a) ∈ Type)


Proof




Definitions occuring in Statement :  cubical-fun-family: cubical-fun-family(X; A; B; I; a) csm-ap-type: (AF)s cubical-type: {X ⊢ _} csm-ap: (s)x cube_set_map: A ⟶ B I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: all: x:A. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T cubical_set: CubicalSet uall: [x:A]. B[x] cube_set_map: A ⟶ B cube-cat: CubeCat I_cube: A(I) I_set: A(I) cubical-fun-family: cubical-fun-family(X; A; B; I; a) presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) csm-ap: (s)x pscm-ap: (s)x cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) csm-ap-type: (AF)s pscm-ap-type: (AF)s
Lemmas referenced :  pscm-presheaf-fun-family cube-cat_wf cubical-type-sq-presheaf-type cat_ob_pair_lemma cat_arrow_triple_lemma cat_comp_tuple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin hypothesis sqequalRule isectElimination Error :memTop

Latex:
\mforall{}X,Delta:j\mvdash{}.  \mforall{}A,B:\{X  \mvdash{}  \_\}.  \mforall{}s:Delta  j{}\mrightarrow{}  X.  \mforall{}I:fset(\mBbbN{}).  \mforall{}a:Delta(I).
    (cubical-fun-family(X;  A;  B;  I;  (s)a)  =  cubical-fun-family(Delta;  (A)s;  (B)s;  I;  a))



Date html generated: 2020_05_20-PM-01_59_56
Last ObjectModification: 2020_04_03-PM-08_33_07

Theory : cubical!type!theory


Home Index