Nuprl Lemma : csm-cubical-fun-family
∀X,Delta:j⊢. ∀A,B:{X ⊢ _}. ∀s:Delta j⟶ X. ∀I:fset(ℕ). ∀a:Delta(I).
  (cubical-fun-family(X; A; B; I; (s)a) = cubical-fun-family(Delta; (A)s; (B)s; I; a) ∈ Type)
Proof
Definitions occuring in Statement : 
cubical-fun-family: cubical-fun-family(X; A; B; I; a)
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
csm-ap: (s)x
, 
cube_set_map: A ⟶ B
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
fset: fset(T)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
cube_set_map: A ⟶ B
, 
cube-cat: CubeCat
, 
I_cube: A(I)
, 
I_set: A(I)
, 
cubical-fun-family: cubical-fun-family(X; A; B; I; a)
, 
presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a)
, 
cubical-type-at: A(a)
, 
presheaf-type-at: A(a)
, 
cube-set-restriction: f(s)
, 
psc-restriction: f(s)
, 
csm-ap: (s)x
, 
pscm-ap: (s)x
, 
cubical-type-ap-morph: (u a f)
, 
presheaf-type-ap-morph: (u a f)
, 
csm-ap-type: (AF)s
, 
pscm-ap-type: (AF)s
Lemmas referenced : 
pscm-presheaf-fun-family, 
cube-cat_wf, 
cubical-type-sq-presheaf-type, 
cat_ob_pair_lemma, 
cat_arrow_triple_lemma, 
cat_comp_tuple_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
hypothesis, 
sqequalRule, 
isectElimination, 
Error :memTop
Latex:
\mforall{}X,Delta:j\mvdash{}.  \mforall{}A,B:\{X  \mvdash{}  \_\}.  \mforall{}s:Delta  j{}\mrightarrow{}  X.  \mforall{}I:fset(\mBbbN{}).  \mforall{}a:Delta(I).
    (cubical-fun-family(X;  A;  B;  I;  (s)a)  =  cubical-fun-family(Delta;  (A)s;  (B)s;  I;  a))
Date html generated:
2020_05_20-PM-01_59_56
Last ObjectModification:
2020_04_03-PM-08_33_07
Theory : cubical!type!theory
Home
Index