Nuprl Lemma : csm-cubical-fun

X,Delta:j⊢. ∀A,B:{X ⊢ _}. ∀s:Delta j⟶ X.  (((A ⟶ B))s (Delta ⊢ (A)s ⟶ (B)s) ∈ {Delta ⊢ _})


Proof




Definitions occuring in Statement :  cubical-fun: (A ⟶ B) csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T cubical_set: CubicalSet uall: [x:A]. B[x] cube_set_map: A ⟶ B csm-ap-type: (AF)s pscm-ap-type: (AF)s cubical-fun: (A ⟶ B) presheaf-fun: (A ⟶ B) cubical-fun-family: cubical-fun-family(X; A; B; I; a) presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) cube-cat: CubeCat cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) csm-ap: (s)x pscm-ap: (s)x
Lemmas referenced :  pscm-presheaf-fun cube-cat_wf cubical-type-sq-presheaf-type cat_ob_pair_lemma cat_arrow_triple_lemma cat_comp_tuple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin hypothesis sqequalRule isectElimination Error :memTop

Latex:
\mforall{}X,Delta:j\mvdash{}.  \mforall{}A,B:\{X  \mvdash{}  \_\}.  \mforall{}s:Delta  j{}\mrightarrow{}  X.    (((A  {}\mrightarrow{}  B))s  =  (Delta  \mvdash{}  (A)s  {}\mrightarrow{}  (B)s))



Date html generated: 2020_05_20-PM-02_23_32
Last ObjectModification: 2020_04_03-PM-08_33_51

Theory : cubical!type!theory


Home Index