Nuprl Lemma : csm-dependent_wf

X,Delta:j⊢. ∀A:{X ⊢ _}. ∀s:Delta j⟶ X.  ((s)dep ∈ Delta.(A)s j⟶ X.A)


Proof




Definitions occuring in Statement :  csm-dependent: (s)dep cube-context-adjoin: X.A csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T cubical_set: CubicalSet uall: [x:A]. B[x] cube_set_map: A ⟶ B cube-context-adjoin: X.A psc-adjoin: X.A I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a) csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) csm-dependent: (s)dep pscm-dependent: (s)dep csm-adjoin: (s;u) pscm-adjoin: (s;u) csm-comp: F pscm-comp: F typed-cc-fst: tp{i:l} typed-psc-fst: tp{i:l} cc-fst: p psc-fst: p typed-cc-snd: tq typed-psc-snd: tq cc-snd: q psc-snd: q
Lemmas referenced :  pscm-dependent_wf cube-cat_wf cubical-type-sq-presheaf-type
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin hypothesis sqequalRule isectElimination Error :memTop

Latex:
\mforall{}X,Delta:j\mvdash{}.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}s:Delta  j{}\mrightarrow{}  X.    ((s)dep  \mmember{}  Delta.(A)s  j{}\mrightarrow{}  X.A)



Date html generated: 2020_05_20-PM-02_00_34
Last ObjectModification: 2020_04_03-PM-08_33_35

Theory : cubical!type!theory


Home Index