Nuprl Lemma : csm-discrete-pi

[A:Type]. ∀[B:A ⟶ Type]. ∀[X,Y:j⊢]. ∀[s:Y j⟶ X].
  ((Πdiscr(A) discrete-family(A;a.B[a]))s Y ⊢ Πdiscr(A) discrete-family(A;a.B[a]) ∈ {Y ⊢ _})


Proof




Definitions occuring in Statement :  discrete-family: discrete-family(A;a.B[a]) discrete-cubical-type: discr(T) cubical-pi: ΠB csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] discrete-cubical-type: discr(T) csm-ap-type: (AF)s discrete-family: discrete-family(A;a.B[a]) cc-snd: q cc-fst: p csm-comp: F csm-adjoin: (s;u) compose: g csm-ap: (s)x pi2: snd(t)
Lemmas referenced :  csm-cubical-pi discrete-cubical-type_wf discrete-family_wf cube_set_map_wf cubical_set_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination hypothesis sqequalRule lambdaEquality_alt applyEquality universeIsType because_Cache instantiate functionIsType inhabitedIsType universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[X,Y:j\mvdash{}].  \mforall{}[s:Y  j{}\mrightarrow{}  X].
    ((\mPi{}discr(A)  discrete-family(A;a.B[a]))s  =  Y  \mvdash{}  \mPi{}discr(A)  discrete-family(A;a.B[a]))



Date html generated: 2020_05_20-PM-03_38_23
Last ObjectModification: 2020_04_07-PM-04_28_56

Theory : cubical!type!theory


Home Index