Nuprl Lemma : csm-discrete-sigma
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[X,Y:j⊢]. ∀[s:Y j⟶ X].
  ((Σ discr(A) discrete-family(A;a.B[a]))s = Σ discr(A) discrete-family(A;a.B[a]) ∈ {Y ⊢ _})
Proof
Definitions occuring in Statement : 
discrete-family: discrete-family(A;a.B[a]), 
discrete-cubical-type: discr(T), 
cubical-sigma: Σ A B, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cube_set_map: A ⟶ B, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
discrete-cubical-type: discr(T), 
csm-ap-type: (AF)s, 
discrete-family: discrete-family(A;a.B[a]), 
cc-snd: q, 
cc-fst: p, 
csm-comp: G o F, 
csm-adjoin: (s;u), 
compose: f o g, 
csm-ap: (s)x, 
pi2: snd(t)
Lemmas referenced : 
csm-cubical-sigma, 
discrete-cubical-type_wf, 
discrete-family_wf, 
cube_set_map_wf, 
cubical_set_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
universeIsType, 
because_Cache, 
instantiate, 
functionIsType, 
inhabitedIsType, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[X,Y:j\mvdash{}].  \mforall{}[s:Y  j{}\mrightarrow{}  X].
    ((\mSigma{}  discr(A)  discrete-family(A;a.B[a]))s  =  \mSigma{}  discr(A)  discrete-family(A;a.B[a]))
Date html generated:
2020_05_20-PM-03_38_35
Last ObjectModification:
2020_04_07-PM-04_29_21
Theory : cubical!type!theory
Home
Index