Nuprl Lemma : csm-face-0
∀[s:Top]. ((0(𝔽))s ~ 0(𝔽))
Proof
Definitions occuring in Statement : 
face-0: 0(𝔽)
, 
csm-ap-term: (t)s
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
face-0: 0(𝔽)
, 
csm-ap-term: (t)s
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
extract_by_obid, 
hypothesis
Latex:
\mforall{}[s:Top].  ((0(\mBbbF{}))s  \msim{}  0(\mBbbF{}))
Date html generated:
2018_05_23-AM-09_19_55
Last ObjectModification:
2018_05_20-PM-06_18_06
Theory : cubical!type!theory
Home
Index