Nuprl Lemma : csm-glue-comp
∀[G:j⊢]. ∀[K:Top]. ∀[A:{G ⊢ _}]. ∀[psi:{G ⊢ _:𝔽}]. ∀[T:{G, psi ⊢ _}]. ∀[cA,cT,f,tau:Top].
  ((comp(Glue [psi ⊢→ (T, f)] A) )tau ~ comp(Glue [(psi)tau ⊢→ ((T)tau, (f)tau)] (A)tau) )
Proof
Definitions occuring in Statement : 
glue-comp: comp(Glue [phi ⊢→ (T, f)] A) , 
csm-comp-structure: (cA)tau, 
context-subset: Gamma, phi, 
face-type: 𝔽, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
csm-comp-structure: (cA)tau, 
glue-comp: comp(Glue [phi ⊢→ (T, f)] A) , 
member: t ∈ T, 
csm-ap-term: (t)s, 
interval-type: 𝕀, 
csm-comp: G o F, 
csm-ap: (s)x, 
compose: f o g, 
cubical-type: {X ⊢ _}, 
csm-ap-type: (AF)s, 
interval-1: 1(𝕀), 
csm-id-adjoin: [u], 
partial-term-1: u[1], 
cc-fst: p, 
cc-snd: q, 
interval-0: 0(𝕀), 
csm-id: 1(X), 
csm-adjoin: (s;u)
Lemmas referenced : 
csm-equiv-fun, 
cubical-type_wf, 
context-subset_wf, 
istype-cubical-term, 
face-type_wf, 
istype-top, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
Error :memTop, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
setElimination, 
rename, 
productElimination, 
universeIsType, 
instantiate
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[K:Top].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[psi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{G,  psi  \mvdash{}  \_\}].  \mforall{}[cA,cT,f,tau:Top].
    ((comp(Glue  [psi  \mvdash{}\mrightarrow{}  (T,  f)]  A)  )tau  \msim{}  comp(Glue  [(psi)tau  \mvdash{}\mrightarrow{}  ((T)tau,  (f)tau)]  (A)tau)  )
Date html generated:
2020_05_20-PM-07_04_15
Last ObjectModification:
2020_04_21-PM-07_53_16
Theory : cubical!type!theory
Home
Index