Nuprl Lemma : csm-id-adjoin-ap-type

Gamma,Delta:j⊢. ∀A:{Gamma ⊢ _}. ∀B:{Gamma.A ⊢ _}. ∀sigma:Delta j⟶ Gamma. ∀u:{Delta ⊢ _:(A)sigma}.
  (((B)(sigma p;q))[u] (B)(sigma;u) ∈ {Delta ⊢ _})


Proof




Definitions occuring in Statement :  csm-id-adjoin: [u] csm-adjoin: (s;u) cc-snd: q cc-fst: p cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} csm-comp: F cube_set_map: A ⟶ B cubical_set: CubicalSet all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T cubical_set: CubicalSet uall: [x:A]. B[x] cube-context-adjoin: X.A psc-adjoin: X.A I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) cube_set_map: A ⟶ B csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x csm-adjoin: (s;u) pscm-adjoin: (s;u) csm-comp: F pscm-comp: F cc-fst: p psc-fst: p cc-snd: q psc-snd: q csm-id-adjoin: [u] pscm-id-adjoin: [u] csm-id: 1(X) pscm-id: 1(X)
Lemmas referenced :  pscm-id-adjoin-ap-type cube-cat_wf cubical-type-sq-presheaf-type cubical-term-sq-presheaf-term
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin hypothesis sqequalRule isectElimination Error :memTop

Latex:
\mforall{}Gamma,Delta:j\mvdash{}.  \mforall{}A:\{Gamma  \mvdash{}  \_\}.  \mforall{}B:\{Gamma.A  \mvdash{}  \_\}.  \mforall{}sigma:Delta  j{}\mrightarrow{}  Gamma.  \mforall{}u:\{Delta  \mvdash{}  \_:(A)sigma\}.
    (((B)(sigma  o  p;q))[u]  =  (B)(sigma;u))



Date html generated: 2020_05_20-PM-01_57_45
Last ObjectModification: 2020_04_03-PM-08_31_45

Theory : cubical!type!theory


Home Index