Nuprl Lemma : csm-id-adjoin-ap-type
∀Gamma,Delta:j⊢. ∀A:{Gamma ⊢ _}. ∀B:{Gamma.A ⊢ _}. ∀sigma:Delta j⟶ Gamma. ∀u:{Delta ⊢ _:(A)sigma}.
  (((B)(sigma o p;q))[u] = (B)(sigma;u) ∈ {Delta ⊢ _})
Proof
Definitions occuring in Statement : 
csm-id-adjoin: [u]
, 
csm-adjoin: (s;u)
, 
cc-snd: q
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
csm-comp: G o F
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
cube-context-adjoin: X.A
, 
psc-adjoin: X.A
, 
I_cube: A(I)
, 
I_set: A(I)
, 
cubical-type-at: A(a)
, 
presheaf-type-at: A(a)
, 
cube-set-restriction: f(s)
, 
psc-restriction: f(s)
, 
cubical-type-ap-morph: (u a f)
, 
presheaf-type-ap-morph: (u a f)
, 
cube_set_map: A ⟶ B
, 
csm-ap-type: (AF)s
, 
pscm-ap-type: (AF)s
, 
csm-ap: (s)x
, 
pscm-ap: (s)x
, 
csm-adjoin: (s;u)
, 
pscm-adjoin: (s;u)
, 
csm-comp: G o F
, 
pscm-comp: G o F
, 
cc-fst: p
, 
psc-fst: p
, 
cc-snd: q
, 
psc-snd: q
, 
csm-id-adjoin: [u]
, 
pscm-id-adjoin: [u]
, 
csm-id: 1(X)
, 
pscm-id: 1(X)
Lemmas referenced : 
pscm-id-adjoin-ap-type, 
cube-cat_wf, 
cubical-type-sq-presheaf-type, 
cubical-term-sq-presheaf-term
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
hypothesis, 
sqequalRule, 
isectElimination, 
Error :memTop
Latex:
\mforall{}Gamma,Delta:j\mvdash{}.  \mforall{}A:\{Gamma  \mvdash{}  \_\}.  \mforall{}B:\{Gamma.A  \mvdash{}  \_\}.  \mforall{}sigma:Delta  j{}\mrightarrow{}  Gamma.  \mforall{}u:\{Delta  \mvdash{}  \_:(A)sigma\}.
    (((B)(sigma  o  p;q))[u]  =  (B)(sigma;u))
Date html generated:
2020_05_20-PM-01_57_45
Last ObjectModification:
2020_04_03-PM-08_31_45
Theory : cubical!type!theory
Home
Index