Nuprl Lemma : csm-path_comp
∀[G,H,A,a,b,cA,tau:Top].  ((path_comp(G;A;a;b;cA))tau ~ path_comp(H;(A)tau;(a)tau;(b)tau;(cA)tau))
Proof
Definitions occuring in Statement : 
path_comp: path_comp, 
csm-comp-structure: (cA)tau, 
csm-ap-term: (t)s, 
csm-ap-type: (AF)s, 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
csm-comp-structure: (cA)tau, 
path_comp: path_comp, 
cc-snd: q, 
cc-fst: p, 
csm-ap-term: (t)s, 
csm+: tau+, 
csm-comp: G o F, 
csm-ap: (s)x, 
csm-ap-type: (AF)s, 
csm-adjoin: (s;u), 
compose: f o g, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalRule, 
because_Cache, 
cut, 
introduction, 
extract_by_obid, 
hypothesis
Latex:
\mforall{}[G,H,A,a,b,cA,tau:Top].    ((path\_comp(G;A;a;b;cA))tau  \msim{}  path\_comp(H;(A)tau;(a)tau;(b)tau;(cA)tau))
Date html generated:
2018_05_23-AM-11_03_11
Last ObjectModification:
2018_05_20-PM-08_13_13
Theory : cubical!type!theory
Home
Index