Nuprl Lemma : csm-sigma_comp
∀[X,A,cA,cB,H,tau:Top].  ((sigma_comp(cA;cB))tau ~ sigma_comp((cA)tau;(cB)tau+))
Proof
Definitions occuring in Statement : 
sigma_comp: sigma_comp(cA;cB), 
csm-comp-structure: (cA)tau, 
csm+: tau+, 
cube-context-adjoin: X.A, 
csm-ap-type: (AF)s, 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
csm-comp-structure: (cA)tau, 
sigma_comp: sigma_comp(cA;cB), 
let: let, 
csm+: tau+, 
csm-ap-type: (AF)s, 
csm-comp: G o F, 
csm-id-adjoin: [u], 
interval-1: 1(𝕀), 
csm-ap-term: (t)s, 
compose: f o g, 
csm-id: 1(X), 
csm-adjoin: (s;u), 
cc-snd: q, 
cc-fst: p, 
csm-ap: (s)x, 
pi2: snd(t), 
pi1: fst(t), 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalRule, 
because_Cache, 
cut, 
introduction, 
extract_by_obid, 
hypothesis
Latex:
\mforall{}[X,A,cA,cB,H,tau:Top].    ((sigma\_comp(cA;cB))tau  \msim{}  sigma\_comp((cA)tau;(cB)tau+))
Date html generated:
2018_05_23-AM-10_50_12
Last ObjectModification:
2018_05_20-PM-07_57_20
Theory : cubical!type!theory
Home
Index