Nuprl Lemma : csm-sigma_comp3
∀[H,A',X,cA,cB,A,tau:Top].  ((sigma_comp(cA;cB))tau ~ sigma_comp((cA)tau;(cB)tau+))
Proof
Definitions occuring in Statement : 
sigma_comp: sigma_comp(cA;cB)
, 
csm-comp-structure: (cA)tau
, 
csm+: tau+
, 
cube-context-adjoin: X.A
, 
csm-ap-type: (AF)s
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
csm-comp-structure: (cA)tau
, 
sigma_comp: sigma_comp(cA;cB)
, 
let: let, 
csm+: tau+
, 
csm-comp: G o F
, 
csm-id-adjoin: [u]
, 
csm-ap-type: (AF)s
, 
interval-1: 1(𝕀)
, 
csm-ap-term: (t)s
, 
compose: f o g
, 
csm-id: 1(X)
, 
csm-adjoin: (s;u)
, 
cc-snd: q
, 
cc-fst: p
, 
csm-ap: (s)x
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalRule, 
because_Cache, 
cut, 
introduction, 
extract_by_obid, 
hypothesis
Latex:
\mforall{}[H,A',X,cA,cB,A,tau:Top].    ((sigma\_comp(cA;cB))tau  \msim{}  sigma\_comp((cA)tau;(cB)tau+))
Date html generated:
2017_01_10-AM-09_54_17
Last ObjectModification:
2016_12_24-PM-00_40_36
Theory : cubical!type!theory
Home
Index