Nuprl Lemma : csm-swap_wf

[G:j⊢]. ∀[A,B:{G ⊢ _}].  (csm-swap(G;A;B) ∈ G.A.(B)p ij⟶ G.B.(A)p)


Proof




Definitions occuring in Statement :  csm-swap: csm-swap(G;A;B) cc-fst: p cube-context-adjoin: X.A csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube_set_map: A ⟶ B cube-context-adjoin: X.A psc-adjoin: X.A I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x cc-fst: p psc-fst: p csm-swap: csm-swap(G;A;B) pscm-swap: pscm-swap(G;A;B) csm-adjoin: (s;u) pscm-adjoin: (s;u) csm+: tau+ pscm+: tau+ csm-comp: F pscm-comp: F cc-snd: q psc-snd: q csm-ap-term: (t)s pscm-ap-term: (t)s
Lemmas referenced :  pscm-swap_wf cube-cat_wf cubical-type-sq-presheaf-type
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_\}].    (csm-swap(G;A;B)  \mmember{}  G.A.(B)p  ij{}\mrightarrow{}  G.B.(A)p)



Date html generated: 2020_05_20-PM-01_58_58
Last ObjectModification: 2020_04_04-AM-09_39_53

Theory : cubical!type!theory


Home Index