Nuprl Lemma : csm-type-ap_wf

[Gamma,Delta:j⊢]. ∀[s:Delta j⟶ Gamma]. ∀[A:{Gamma ⊢ _}].  Delta ⊢ csm-type-ap(A;s)


Proof




Definitions occuring in Statement :  csm-type-ap: csm-type-ap(A;s) cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube_set_map: A ⟶ B csm-type-ap: csm-type-ap(A;s) pscm-type-ap: pscm-type-ap(A;s) csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x
Lemmas referenced :  pscm-type-ap_wf cube-cat_wf cubical-type-sq-presheaf-type
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop

Latex:
\mforall{}[Gamma,Delta:j\mvdash{}].  \mforall{}[s:Delta  j{}\mrightarrow{}  Gamma].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    Delta  \mvdash{}  csm-type-ap(A;s)



Date html generated: 2020_05_20-PM-01_49_24
Last ObjectModification: 2020_04_03-PM-08_26_54

Theory : cubical!type!theory


Home Index