Nuprl Lemma : csm-univ-comp
∀[s:Top]. ((univ-comp{i:l}())s ~ univ-comp{i:l}())
Proof
Definitions occuring in Statement : 
univ-comp: univ-comp{i:l}(), 
csm-composition: (comp)sigma, 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
univ-comp: univ-comp{i:l}(), 
comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp), 
comp-fun-to-comp-op1: comp-fun-to-comp-op1(Gamma;A;comp), 
canonical-section: canonical-section(Gamma;A;I;rho;a), 
context-map: <rho>, 
csm-composition: (comp)sigma, 
cubical-universe: c𝕌, 
compU: compU(), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cube-set-restriction: f(s), 
pi2: snd(t), 
trivial-cube-set: (), 
it: ⋅, 
nil: []
Lemmas referenced : 
void-list-equality, 
nil_wf, 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
voidEquality, 
because_Cache, 
axiomSqEquality
Latex:
\mforall{}[s:Top].  ((univ-comp\{i:l\}())s  \msim{}  univ-comp\{i:l\}())
Date html generated:
2020_05_20-PM-07_24_19
Last ObjectModification:
2020_04_25-PM-10_03_44
Theory : cubical!type!theory
Home
Index