Nuprl Lemma : csm-universe-comp-op
∀[E,s:Top].  ((compOp(E))s ~ compOp((E)s))
Proof
Definitions occuring in Statement : 
universe-comp-op: compOp(t)
, 
csm-composition: (comp)sigma
, 
csm-ap-term: (t)s
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe-comp-op: compOp(t)
, 
csm-composition: (comp)sigma
Lemmas referenced : 
csm-ap-term-at, 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
Error :memTop, 
hypothesisEquality, 
hypothesis, 
axiomSqEquality, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[E,s:Top].    ((compOp(E))s  \msim{}  compOp((E)s))
Date html generated:
2020_05_20-PM-07_16_01
Last ObjectModification:
2020_04_25-PM-09_40_28
Theory : cubical!type!theory
Home
Index