Nuprl Lemma : csm-universe-comp-op

[E,s:Top].  ((compOp(E))s compOp((E)s))


Proof




Definitions occuring in Statement :  universe-comp-op: compOp(t) csm-composition: (comp)sigma csm-ap-term: (t)s uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T universe-comp-op: compOp(t) csm-composition: (comp)sigma
Lemmas referenced :  csm-ap-term-at istype-top
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesisEquality hypothesis axiomSqEquality inhabitedIsType isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[E,s:Top].    ((compOp(E))s  \msim{}  compOp((E)s))



Date html generated: 2020_05_20-PM-07_16_01
Last ObjectModification: 2020_04_25-PM-09_40_28

Theory : cubical!type!theory


Home Index