Nuprl Lemma : ctt-term-type-is_wf

[X:⊢''']. ∀[t:cttTerm(X)]. ∀[T:{X ⊢''' _}].  (type(t)=T ∈ ℙ{i''''})


Proof




Definitions occuring in Statement :  ctt-term-type-is: type(t)=T ctt-term-meaning: cttTerm(X) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] ctt-term-type-is: type(t)=T member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  ctt-term-type_wf ctt-level-type-subtype ctt-term-level_wf equal_wf cubical-type_wf ctt-term-meaning_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule instantiate universeIsType

Latex:
\mforall{}[X:\mvdash{}'''].  \mforall{}[t:cttTerm(X)].  \mforall{}[T:\{X  \mvdash{}'''  \_\}].    (type(t)=T  \mmember{}  \mBbbP{}\{i''''\})



Date html generated: 2020_05_20-PM-07_52_07
Last ObjectModification: 2020_05_05-PM-02_05_51

Theory : cubical!type!theory


Home Index