Nuprl Lemma : cube-set-restriction-comp
∀X:j⊢. ∀I,J,K:fset(ℕ). ∀f:J ⟶ I. ∀g:K ⟶ J. ∀a:X(I).  (g(f(a)) = f ⋅ g(a) ∈ X(K))
Proof
Definitions occuring in Statement : 
cube-set-restriction: f(s), 
I_cube: A(I), 
cubical_set: CubicalSet, 
nh-comp: g ⋅ f, 
names-hom: I ⟶ J, 
fset: fset(T), 
nat: ℕ, 
all: ∀x:A. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
cubical_set: CubicalSet, 
cube-cat: CubeCat, 
I_cube: A(I), 
I_set: A(I), 
cube-set-restriction: f(s), 
psc-restriction: f(s)
Lemmas referenced : 
psc-restriction-comp, 
cube-cat_wf, 
cat_ob_pair_lemma, 
cat_arrow_triple_lemma, 
cat_comp_tuple_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
hypothesis, 
sqequalRule, 
Error :memTop
Latex:
\mforall{}X:j\mvdash{}.  \mforall{}I,J,K:fset(\mBbbN{}).  \mforall{}f:J  {}\mrightarrow{}  I.  \mforall{}g:K  {}\mrightarrow{}  J.  \mforall{}a:X(I).    (g(f(a))  =  f  \mcdot{}  g(a))
Date html generated:
2020_05_20-PM-01_42_34
Last ObjectModification:
2020_04_03-PM-03_34_25
Theory : cubical!type!theory
Home
Index