Nuprl Lemma : cube-set-restriction-id
∀[X:j⊢]. ∀[I:fset(ℕ)]. ∀[s:X(I)].  (1(s) = s ∈ X(I))
Proof
Definitions occuring in Statement : 
cube-set-restriction: f(s), 
I_cube: A(I), 
cubical_set: CubicalSet, 
nh-id: 1, 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cubical_set: CubicalSet, 
cube-cat: CubeCat, 
all: ∀x:A. B[x], 
I_cube: A(I), 
I_set: A(I), 
cube-set-restriction: f(s), 
psc-restriction: f(s)
Lemmas referenced : 
psc-restriction-id, 
cube-cat_wf, 
cat_ob_pair_lemma, 
cat_id_tuple_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
dependent_functionElimination, 
Error :memTop
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[s:X(I)].    (1(s)  =  s)
Date html generated:
2020_05_20-PM-01_42_20
Last ObjectModification:
2020_04_03-PM-03_34_17
Theory : cubical!type!theory
Home
Index