Nuprl Lemma : cubical-app-id-fun

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[u:{X ⊢ _:A}].  (app(cubical-id-fun(X); u) u ∈ {X ⊢ _:A})


Proof




Definitions occuring in Statement :  cubical-app: app(w; u) cubical-id-fun: cubical-id-fun(X) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cubical-app: app(w; u) presheaf-app: app(w; u) cubical-id-fun: cubical-id-fun(X) presheaf-id-fun: presheaf-id-fun(X) cubical-lam: cubical-lam(X;b) presheaf-lam: presheaf-lam(X;b) cubical-lambda: b) presheaf-lambda: b) cc-snd: q psc-snd: q cc-adjoin-cube: (v;u) psc-adjoin-set: (v;u) cube-set-restriction: f(s) psc-restriction: f(s) cube-cat: CubeCat all: x:A. B[x]
Lemmas referenced :  presheaf-app-id-fun cube-cat_wf cubical-type-sq-presheaf-type cubical-term-sq-presheaf-term cat_id_tuple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop,  dependent_functionElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].    (app(cubical-id-fun(X);  u)  =  u)



Date html generated: 2020_05_20-PM-02_30_54
Last ObjectModification: 2020_04_03-PM-08_41_11

Theory : cubical!type!theory


Home Index