Nuprl Lemma : cubical-beta
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[b:{X.A ⊢ _:B}]. ∀[u:{X ⊢ _:A}].  (app((λb); u) = (b)[u] ∈ {X ⊢ _:(B)[u]})
Proof
Definitions occuring in Statement : 
cubical-app: app(w; u), 
cubical-lambda: (λb), 
csm-id-adjoin: [u], 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cubical_set: CubicalSet, 
cube-context-adjoin: X.A, 
psc-adjoin: X.A, 
I_cube: A(I), 
I_set: A(I), 
cubical-type-at: A(a), 
presheaf-type-at: A(a), 
cube-set-restriction: f(s), 
psc-restriction: f(s), 
cubical-type-ap-morph: (u a f), 
presheaf-type-ap-morph: (u a f), 
csm-ap-type: (AF)s, 
pscm-ap-type: (AF)s, 
csm-ap: (s)x, 
pscm-ap: (s)x, 
csm-id-adjoin: [u], 
pscm-id-adjoin: [u], 
csm-adjoin: (s;u), 
pscm-adjoin: (s;u), 
csm-id: 1(X), 
pscm-id: 1(X), 
cubical-app: app(w; u), 
presheaf-app: app(w; u), 
cubical-lambda: (λb), 
presheaf-lambda: (λb), 
cc-adjoin-cube: (v;u), 
psc-adjoin-set: (v;u), 
cube-cat: CubeCat, 
all: ∀x:A. B[x], 
csm-ap-term: (t)s, 
pscm-ap-term: (t)s
Lemmas referenced : 
presheaf-beta, 
cube-cat_wf, 
cubical-type-sq-presheaf-type, 
cubical-term-sq-presheaf-term, 
cat_id_tuple_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
Error :memTop, 
dependent_functionElimination
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[b:\{X.A  \mvdash{}  \_:B\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].    (app((\mlambda{}b);  u)  =  (b)[u])
Date html generated:
2020_05_20-PM-02_30_45
Last ObjectModification:
2020_04_03-PM-08_41_01
Theory : cubical!type!theory
Home
Index