Nuprl Lemma : cubical-fiber-subset-adjoin2
∀[X,T,A,B1,B2,w,a,phi:Top].  (X, phi.B1.B2 ⊢ Fiber(w;a) ~ X.B1.B2 ⊢ Fiber(w;a))
Proof
Definitions occuring in Statement : 
cubical-fiber: Fiber(w;a)
, 
context-subset: Gamma, phi
, 
cube-context-adjoin: X.A
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
cubical-fiber: Fiber(w;a)
, 
cubical-sigma: Σ A B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
Lemmas referenced : 
path-type-subset-adjoin3, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
because_Cache, 
isect_memberFormation, 
sqequalAxiom
Latex:
\mforall{}[X,T,A,B1,B2,w,a,phi:Top].    (X,  phi.B1.B2  \mvdash{}  Fiber(w;a)  \msim{}  X.B1.B2  \mvdash{}  Fiber(w;a))
Date html generated:
2017_01_10-AM-08_56_36
Last ObjectModification:
2016_12_11-PM-02_17_13
Theory : cubical!type!theory
Home
Index