Nuprl Lemma : cubical-id-equiv-subset
∀[G,phi,A:Top].  (IdEquiv(G, phi;A) ~ IdEquiv(G;A))
Proof
Definitions occuring in Statement : 
cubical-id-equiv: IdEquiv(X;T), 
context-subset: Gamma, phi, 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
cubical-id-equiv: IdEquiv(X;T), 
cubical-id-fun: cubical-id-fun(X), 
cubical-lam: cubical-lam(X;b), 
cubical-id-is-equiv: cubical-id-is-equiv(X;T), 
id-fiber-center: id-fiber-center(X;T), 
contr-witness: contr-witness(X;c;p), 
id-fiber-contraction: id-fiber-contraction(X;T), 
cubical-refl: refl(a), 
term-to-path: <>(a), 
singleton-contraction: singleton-contraction(X;pth), 
member: t ∈ T, 
top: Top, 
path-contraction: path-contraction(X;pth), 
path-type: (Path_A a b), 
pathtype: Path(A), 
cube-context-adjoin: X.A, 
cubical-fun: (A ⟶ B), 
context-subset: Gamma, phi, 
all: ∀x:A. B[x], 
cubical-fun-family: cubical-fun-family(X; A; B; I; a), 
pi1: fst(t), 
pi2: snd(t), 
cubical-lambda: (λb), 
implies: P ⇒ Q, 
prop: ℙ
Lemmas referenced : 
top_wf, 
cubical-lambda-subset, 
cubical-lambda-subset2, 
I_cube_pair_redex_lemma, 
cube_set_restriction_pair_lemma, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
because_Cache, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination
Latex:
\mforall{}[G,phi,A:Top].    (IdEquiv(G,  phi;A)  \msim{}  IdEquiv(G;A))
Date html generated:
2017_10_05-AM-02_08_45
Last ObjectModification:
2017_07_28-AM-10_18_21
Theory : cubical!type!theory
Home
Index