Nuprl Definition : cubical-isect-family

cubical-isect-family(X;A;B;I;a) ==
  {w:J:fset(ℕ) ⟶ f:J ⟶ I ⟶ (⋂u:A(f(a)). B((f(a);u)))| 
   ∀J,K:fset(ℕ). ∀f:J ⟶ I. ∀g:K ⟶ J. ∀u:A(f(a)).  ((w (f(a);u) g) (w f ⋅ g) ∈ B(g((f(a);u))))} 



Definitions occuring in Statement :  cc-adjoin-cube: (v;u) cube-context-adjoin: X.A cubical-type-ap-morph: (u f) cubical-type-at: A(a) cube-set-restriction: f(s) nh-comp: g ⋅ f names-hom: I ⟶ J fset: fset(T) nat: all: x:A. B[x] set: {x:A| B[x]}  apply: a isect: x:A. B[x] function: x:A ⟶ B[x] equal: t ∈ T
Definitions occuring in definition :  nh-comp: g ⋅ f apply: a cube-set-restriction: f(s) cc-adjoin-cube: (v;u) cubical-type-ap-morph: (u f) cube-context-adjoin: X.A cubical-type-at: A(a) equal: t ∈ T all: x:A. B[x] names-hom: I ⟶ J nat: fset: fset(T) isect: x:A. B[x] function: x:A ⟶ B[x] set: {x:A| B[x]} 
FDL editor aliases :  cubical-isect-family

Latex:
cubical-isect-family(X;A;B;I;a)  ==
    \{w:J:fset(\mBbbN{})  {}\mrightarrow{}  f:J  {}\mrightarrow{}  I  {}\mrightarrow{}  (\mcap{}u:A(f(a)).  B((f(a);u)))| 
      \mforall{}J,K:fset(\mBbbN{}).  \mforall{}f:J  {}\mrightarrow{}  I.  \mforall{}g:K  {}\mrightarrow{}  J.  \mforall{}u:A(f(a)).    ((w  J  f  (f(a);u)  g)  =  (w  K  f  \mcdot{}  g))\} 



Date html generated: 2016_07_08-PM-10_38_04
Last ObjectModification: 2016_07_08-AM-11_52_46

Theory : cubical!type!theory


Home Index