Nuprl Lemma : cubical-lam_wf
∀[X:j⊢]. ∀[A,B:{X ⊢ _}]. ∀[b:{X.A ⊢ _:(B)p}].  (cubical-lam(X;b) ∈ {X ⊢ _:(A ⟶ B)})
Proof
Definitions occuring in Statement : 
cubical-lam: cubical-lam(X;b), 
cubical-fun: (A ⟶ B), 
cc-fst: p, 
cube-context-adjoin: X.A, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cubical_set: CubicalSet, 
csm-ap-type: (AF)s, 
pscm-ap-type: (AF)s, 
csm-ap: (s)x, 
pscm-ap: (s)x, 
cc-fst: p, 
psc-fst: p, 
cube-context-adjoin: X.A, 
psc-adjoin: X.A, 
I_cube: A(I), 
I_set: A(I), 
cubical-type-at: A(a), 
presheaf-type-at: A(a), 
cube-set-restriction: f(s), 
psc-restriction: f(s), 
cubical-type-ap-morph: (u a f), 
presheaf-type-ap-morph: (u a f), 
cubical-fun: (A ⟶ B), 
presheaf-fun: (A ⟶ B), 
cubical-fun-family: cubical-fun-family(X; A; B; I; a), 
presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a), 
cube-cat: CubeCat, 
all: ∀x:A. B[x], 
cubical-lam: cubical-lam(X;b), 
presheaf-lam: presheaf-lam(X;b), 
cubical-lambda: (λb), 
presheaf-lambda: (λb), 
cc-adjoin-cube: (v;u), 
psc-adjoin-set: (v;u)
Lemmas referenced : 
presheaf-lam_wf, 
cube-cat_wf, 
cubical-type-sq-presheaf-type, 
cubical-term-sq-presheaf-term, 
cat_ob_pair_lemma, 
cat_arrow_triple_lemma, 
cat_comp_tuple_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
Error :memTop, 
dependent_functionElimination
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A,B:\{X  \mvdash{}  \_\}].  \mforall{}[b:\{X.A  \mvdash{}  \_:(B)p\}].    (cubical-lam(X;b)  \mmember{}  \{X  \mvdash{}  \_:(A  {}\mrightarrow{}  B)\})
Date html generated:
2020_05_20-PM-02_24_58
Last ObjectModification:
2020_04_03-PM-08_35_10
Theory : cubical!type!theory
Home
Index